Type:
Conference
Description:
Quasi-1D nanostructures of metal-oxide semiconductors have been extensively investigated for their novel physical properties and have found application in electronics, photonics and gas sensing. Among them, SnO 2 is a typical n-type semiconductor with a wide band gap of 3.6 eV, showing a broad visible photoluminescence (PL) emission. Moreover, SnO 2 nanowires irradiated with UV-visible radiation (near their band gap) show a great increase of conductance and photocurrent (PC) is generated, if a constant potential is applied. PL emission and PC generation are strongly dependent on surface states and can thus be tuned depending on the surrounding atmosphere. In this work, we compared the optical and optoelectronic properties of SnO 2 nanowires synthesized via evaporation-condensation (EC) process. Photoluminescence emission and photocurrent flowing through biased SnO 2 nanowires were …
Publisher:
IEEE
Publication date:
25 Oct 2009
Biblio References:
Pages: 1264-1267
Origin:
SENSORS, 2009 IEEE