-A A +A
Type: 
Journal
Description: 
The properties of 2D InN are predicted to substantially differ from the bulk crystal. The predicted appealing properties relate to strong in‐ and out‐of‐plane excitons, high electron mobility, efficient strain engineering of their electronic and optical properties, and strong application potential in gas sensing. Until now, the realization of 2D InN remained elusive. In this work, the formation of 2D InN and measurements of its bandgap are reported. Bilayer InN is formed between graphene and SiC by an intercalation process in metal–organic chemical vapor deposition (MOCVD). The thickness uniformity of the intercalated structure is investigated by conductive atomic force microscopy (C‐AFM) and the structural properties by atomic resolution transmission electron microscopy (TEM). The coverage of the SiC surface is very high, above 90%, and a major part of the intercalated structure is represented by two sub‐layers of …
Publisher: 
Publication date: 
23 Nov 2020
Authors: 

Béla Pécz, Giuseppe Nicotra, Filippo Giannazzo, Rositsa Yakimova, Antal Koos, Anelia Kakanakova‐Georgieva

Biblio References: 
Pages: 2006660
Origin: 
Advanced Materials