-A A +A
Type: 
Journal
Description: 
Nanostructured WO3 represents a promising material for fast and reliable molecular hydrogen detection through chemo-resistive effect. Here, an extended experimental investigation of WO3-H2 interaction is presented and modeled. A powder of WO3 nanorods (400 nm long, 50 nm large) is produced by hydrothermal technique and drop casted on Pt interdigitated electrode. H2 sensing tests at different concentrations (2000–50,000 ppm) and temperatures (250–400 °C) are reported. Scanning Electron Microscopy (SEM), X-ray Diffraction analysis (XRD), and electrical measurements were performed. The response and recovery kinetics of H2 sensing are carefully described by using a two-isotherms Langmuir model, and kinetics barriers for WO3-H2 interaction are evaluated. Two microscopic processes lead to gas detection. A fast process (shorter than 4 s) is attributed to H2 interaction with adsorbed oxygen at WO3 …
Publisher: 
Elsevier
Publication date: 
1 Dec 2021
Authors: 

G Mineo, K Moulaee, G Neri, S Mirabella, E Bruno

Biblio References: 
Volume: 348 Pages: 130704
Origin: 
Sensors and Actuators B: Chemical