-A A +A
Methanol (CH3OH) oxidation offers a promising avenue for transitioning to clean energy, particularly in the field of direct methanol fuel cells (DMFCs). However, the development of efficient and cost-effective catalysts for the methanol oxidation reaction (MOR) remains a critical challenge. Herein, we report the exceptional electrocatalytic activity and stability of Ni3Sn4 toward MOR in acidic media, achieving a performance comparable to that of commercial Pt/C catalysts. Our catalyst design incorporates Earth-abundant Ni and Sn elements, resulting in a material that is 1800 times more cost-effective than Pt/C. Density functional theory (DFT) modeling substantiates our experimental findings, shedding light on the favorable reaction mechanisms and kinetics on the Ni3Sn4 surface. Additionally, the as-synthesized Ni3Sn4 electrocatalyst demonstrates commendable durability, maintaining its electrocatalytic activity even …
Royal Society of Chemistry
Publication date: 
1 Jan 2023

Danil W Boukhvalov, Gianluca D’olimpio, Junzhe Liu, Corneliu Ghica, Marian Cosmin Istrate, Chia-Nung Kuo, Grazia Giuseppina Politano, Chin Shan Lue, Piero Torelli, Lixue Zhang, Antonio Politano

Biblio References: 
Volume: 59 Issue: 40 Pages: 6040-6043
Chemical Communications