Type:
Journal
Description:
Computing through ensembles of interacting dynamical elements is the next frontier of the diverse field of neuromorphic computing. Spiking neural networks are one of the possible examples. Computation through dynamics and through time requires the development of novel technologies for devices with rich dynamics. Among the various candidates, the most promising ones are volatile electrochemical memristive systems that switch from high to low resistance state by voltage application and self‐recover the high resistance state after a tunable relaxation time. Such devices can perform a wide variety of computational primitives. However, a clear comprehensive picture of their possible dynamics and their physical interpretation is still missing. In the present manuscript, prototypical electrochemical silver/silicon oxide/platinum (Ag/SiOx/Pt) memristive devices are characterized to identify dynamical aspects, like …
Publisher:
Publication date:
1 Jan 2024
Biblio References:
Pages: 2400221
Origin:
Advanced Electronic Materials