-A A +A
SiC is a candidate material for microelectromechanical and nanoelectromechanical systems, but the high residual stress created during the film grow limits the development of the material for these applications. To understand the stress relaxation mechanism in hetero-epitaxial 3C-SiC films, different micromachined free-standing structures have been realized. In this paper, assisted by finite-element method (FEM), a micromachined planar rotating probe was developed for residual stress analysis to split the stress into the following two components: 1) the gradient residual stress (σ 1 ) related to the film defects and 2) the uniform stress (σ 0 ) related to the substrate. Transmission electron microscopy characterization studies about the defect formation and the defect evolution as a function of thickness on 3C-SiC on the Si substrate revealed the problems due to the incorrect linear stress approximation in a …
Publication date: 
15 Apr 2011

R Anzalone, G D'arrigo, M Camarda, C Locke, SE Saddow, F La Via

Biblio References: 
Volume: 20 Issue: 3 Pages: 745-752
Journal of microelectromechanical systems