-A A +A
This paper describes the possibility of employing a digital holographic microscope (DHM) to carry out a noncontact and nondestructive characterization of a microheater integrated on a silicon nitride membrane and subjected to a high thermal load. Microheaters can be affected by the presence of the residual stress due to the technological processes appearing in the form of undesired bowing of the membrane. Moreover, when the temperature of the microheater increases, a further warpage of the structure can be induced. A DHM allows for evaluation, with high accuracy, the deformations due to the residual stress and how these deformations are affected by the thermal loads due to the microheater operating mode. In particular, this dynamic analysis is made possible by measuring the unwanted longitudinal displacement induced by the thermal expansion of both the device and its mechanical support. Taking into …
Publication date: 
23 Jul 2007

Giuseppe Coppola, Valerio Striano, Pietro Ferraro, Sergio De Nicola, Andrea Finizio, Giovanni Pierattini, Piera Maccagnani

Biblio References: 
Volume: 16 Issue: 3 Pages: 659-667
Journal of microelectromechanical systems