-A A +A
Type: 
Journal
Description: 
The condensation of vapor chemical substances inside the nanometric structures of porous silicon is experimentally and theoretically investigated. The liquid phase covers the pore surface as a thin film and fills a volume fraction in the spongelike structure depending on the physical and chemical properties of each compound. The filling factor of different substances has been measured as a function of the porous silicon film porosity by means of an interferometric technique. We have merged a classical effective medium approximation, such as the Bruggemann theory, with a fractal model of the pore in order to find out how the wetting liquid thickness depends on the porosity. Our results demonstrate that the capillary condensation exhibits a nonlinear behavior at high porosities (greater than 0.8), due to the strong decrease of the vapor confinement degree inside the coalescent nanometric pores.
Publisher: 
American Institute of Physics
Publication date: 
15 Jan 2007
Authors: 

Luigi Moretti, Luca De Stefano, Ivo Rendina

Biblio References: 
Volume: 101 Issue: 2 Pages: 024309
Origin: 
Journal of applied physics