-A A +A
Type: 
Journal
Description: 
We have recently presented an integrated silicon-glass opto-chemical sensor forlab-on-chip applications, based on porous silicon and anodic bonding technologies. In thiswork, we have optically characterized the sensor response on exposure to vapors of severalorganic compounds by means of reflectivity measurements. The interaction between theporous silicon, which acts as transducer layer, and the organic vapors fluxed into the glasssealed microchamber, is preserved by the fabrication process, resulting in optical pathincrease, due to the capillary condensation of the vapors into the pores. Using theBruggemann theory, we have calculated the filled pores volume for each substance. Thesensor dynamic has been described by time-resolved measurements: due to the analysischamber miniaturization, the response time is only of 2 s. All these results have beencompared with data acquired on the same PSi structure before the anodic bonding process. View Full-Text
Publisher: 
Molecular Diversity Preservation International
Publication date: 
1 Jun 2006
Authors: 

Luca De Stefano, Krzysztof Malecki, Francesco G Della Corte, Luigi Moretti, Ilaria Rea, Lucia Rotiroti, Ivo Rendina

Biblio References: 
Volume: 6 Issue: 6 Pages: 680-687
Origin: 
Sensors