-A A +A
Type: 
Journal
Description: 
Biosensors have by far moved from laboratories benches to the point of use, and, in some cases, their represent technical standards and commercial successes in applications of social interest, such as medical diagnostic or environmental monitoring. Based on biological molecules, but also on their bio-inspired synthetic counterparts, biosensors employ different transducers (optical, potentiometric, volt-amperometric, colorimetric, and so on) converting the molecular interaction information into a measurable electric signal. As the result of a real multi-disciplinary field of science and technology, biosensors can take advantage from each improvement and progress coming from other disciplines: new features and better performances have been reached in the last year due to simplified fabrication methodologies, deep integration of optical or electrical transducers, and, last but not least, microfluidic circuits. More recently, nanostructured components dramatically increased biosensors reliability especially in public health and environmental monitoring. Nevertheless, there is still a pressing demand of innovations which could lead to smaller, faster, and cheaper biosensors systems with ability to provide not only accurate information but also feedback actions to the real world. The fabrication of a new generation of hybrid biodevices, where biological, or bio-inspired, molecules are fully integrated with a micro or a nano technological platform, strongly depends on the bio-compatibilization treatments of the devices surfaces. The design and the realization of bio/non-bio interfaces with specific properties, such as chemical stability, wettability, and …
Publisher: 
InTech
Publication date: 
18 Jul 2011
Authors: 

Luca De Stefano, Ilaria Rea, Ivo Rendina, Michele Giocondo, Said Houmadi, Sara Longobardi, Paola Giardina

Biblio References: 
Pages: 311-332
Origin: 
Biosensors: emerging materials and applications