-A A +A
High-resolution imaging of low-atomic-number chemical elements using electron microscopy is challenging and may require the use of high doses of electrons. Electron diffractive imaging, which creates real-space images using diffraction intensities and phase retrieval methods, could overcome such issues, although it is also subject to limitations. Here, we show that a combination of electron diffractive imaging and high-resolution transmission electron microscopy can image individual TiO 2 nanocrystals with a resolution of 70 pm while exposing the specimen to a low dose of electrons. Our approach, which does not require spherical and chromatic aberration correction, can reveal the location of light atoms (oxygen) in the crystal lattice. We find that the unit cell in nanoscale TiO 2 is subtly different to that in the corresponding bulk.
Nature Publishing Group
Publication date: 
1 May 2010

Liberato De Caro, Elvio Carlino, Gianvito Caputo, Pantaleo Davide Cozzoli, Cinzia Giannini

Biblio References: 
Volume: 5 Issue: 5 Pages: 360
Nature nanotechnology