-A A +A
Coherent phonons (CPs) generated by laser pulses on the femtosecond scale have been proposed as a means to achieve ultrafast, nonthermal switching in phase-change materials such as Ge 2 Sb 2 Te 5 (GST). Here we use ultrafast optical pump pulses to induce coherent acoustic phonons and stroboscopically measure the corresponding lattice distortions in GST using 100-ps x-ray pulses from the European Synchrotron Radiation Facility (ESRF) storage ring. A linear-chain model provides a good description of the observed changes in the diffraction signal; however, the magnitudes of the measured shifts are too large to be explained by thermal effects alone, implying the presence of excited-state effects in addition to temperature-driven expansion. The information on the movement of atoms during the excitation process can lead to greater insight into the possibilities of using CP-induced phase transitions in GST.
American Physical Society
Publication date: 
25 Sep 2014

Paul Fons, Peter Rodenbach, Kirill V Mitrofanov, Alexander V Kolobov, Junji Tominaga, Roman Shayduk, Alessandro Giussani, Raffaella Calarco, Michael Hanke, Henning Riechert, Robert E Simpson, Muneaki Hase

Biblio References: 
Volume: 90 Issue: 9 Pages: 094305
Physical Review B