-A A +A
Kelvin probe force microscopy provides quantitative insight into the electronic properties of thin molecular layers, as shown by the results of P. Samorì and co‐workers on p. 1407. In the cartoon shown in the inside front cover, a scanning charged tip probes the local surface potential of a self‐assembled layer, inducing charge polarization into a nanoscale “effective area”. These measurements make it possible to unravel the interplay between structural and electronic properties of molecule‐based materials and devices.We describe a systematic study on the influence of different experimental conditions on the Kelvin probe force microscopy (KPFM) quantitative determination of the local surface potential (SP) of organic semiconducting nanostructures of perylene‐bis‐dicarboximide (PDI) self‐assembled at surfaces. We focus on the effect of the amplitude, frequency, and phase of the oscillating voltage on the …
Publication date: 
21 Jul 2006

A Liscio, V Palermo, D Gentilini, F Nolde, K Müllen, P Samorì

Biblio References: 
Volume: 16 Issue: 11
Advanced Functional Materials