-A A +A
Background. New antiviral textiles for the protection and prevention of life-threatening viral diseases are needed. Graphene oxide derivatives are versatile substances that can be combined with fabrics by different green electrochemistry methods. Methods In this study, graphene oxide (GO) nanosheets were combined with textile samples to study GO antiviral potential. GO synthesized in the Chemistry laboratories at the University of Rome Tor Vergata (Italy) and characterized with TEM/EDX, XRD, TGA, Raman spectroscopy, and FTIR, was applied at three different concentrations to linen textiles with the hot-dip and dry method to obtain filters. The GO-treated textiles were tested to prevent infection of a human glioblastoma cell line (U373) with human herpesvirus 6A (HHV-6A). Green electrochemical exfoliation of graphite into the oxidized graphene nanosheets provides a final GO-based product suitable for a virus interaction, mainly depending on the double layer of nanosheets, their corresponding nanometric sizes, and Z-potential value. Results Since GO-treated filters were able to prevent infection of cells in a dose-dependent fashion, our results suggest that GO may exert antiviral properties that can be exploited for medical devices and general use fabrics.
Multidisciplinary Digital Publishing Institute
Publication date: 
1 Jan 2021

Federica Valentini, Mara Cirone, Michela Relucenti, Roberta Santarelli, Aurelia Gaeta, Valentina Mussi, Sara De Simone, Alessandra Zicari, Stefania Mardente

Biblio References: 
Volume: 11 Issue: 16 Pages: 7501
Applied Sciences