Type:
Journal
Description:
Controlled insertion of electronic states within the band gap of semiconductor nanocrystals (NCs) is a powerful tool for tuning their physical properties. One compelling example is II–VI NCs incorporating heterovalent coinage metals in which hole capture produces acceptor-bound excitons. To date, the opposite donor-bound exciton scheme has not been realized because of the unavailability of suitable donor dopants. Here, we produce a model system for donor-bound excitons in CdSeS NCs engineered with sulfur vacancies (VS) that introduce a donor state below the conduction band (CB), resulting in long-lived intragap luminescence. VS-localized electrons are almost unaffected by trapping, and suppression of thermal quenching boosts the emission efficiency to 85%. Magneto-optical measurements indicate that the VS are not magnetically coupled to the NC bands and that the polarization properties are …
Publisher:
American Chemical Society
Publication date:
14 Jul 2021
Biblio References:
Volume: 21 Issue: 14 Pages: 6211-6219
Origin:
Nano letters