-A A +A
We have further extended our compartmental model describing the spread of the infection in Italy. As in our previous work, the model assumes that the time evolution of the observable quantities (number of people still positive to the infection, hospitalized and fatalities cases, healed people, and total number of people that has contracted the infection) depends on average parameters, namely people diffusion coefficient, infection cross-section, and population density. The model provides information on the tight relationship between the variation of the reported infection cases and a well-defined observable physical quantity: the average number of people that lie within the daily displacement area of any single person. With respect to our previous paper, we have extended the analyses to several regions in Italy, characterized by different levels of restrictions and we have correlated them to the diffusion coefficient …
Nature Publishing Group
Publication date: 
1 Dec 2021

Corrado Spinella, Antonio Massimiliano Mio

Biblio References: 
Volume: 11 Issue: 1 Pages: 1-15
Scientific reports