-A A +A
Type: 
Journal
Description: 
Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence emission from the resulting silicon diatoms and, at the same time, to allow the immobilization of biological probes, namely proteins and antibodies, via silanization. We demonstrate that light emission from semiconductive silicon diatoms can be used for antibody-antigen recognition, endorsing this material as optoelectronic transducer.
Publisher: 
SpringerOpen
Publication date: 
1 Dec 2016
Authors: 

Ilaria Rea, Monica Terracciano, Soundarrajan Chandrasekaran, Nicolas H Voelcker, Principia Dardano, Nicola M Martucci, Annalisa Lamberti, Luca De Stefano

Biblio References: 
Volume: 11 Issue: 1 Pages: 1-9
Origin: 
Nanoscale research letters