-A A +A
While luminescent solar concentrators (LSCs) have a simple architecture—a transparent matrix embedding a luminescent fluorophore coupled with solar cells at the lateral side of the LSC slab—multiple paths for possible light losses exist. These are inherently interconnected, and in the past, limited the interest in this device, due to the gap between the theoretical possibilities and experimental achievements. This gap was a result, primarily, of the optical features of the luminescent dyes, since conventional organic luminophores are affected by limited performance in LSC devices. The rise of a wide portfolio of optically active inorganic nanomaterials in the last decade provides an alternative to organic dyes and has lead to a renaissance in the role of LSCs among the unconventional solar energy conversion devices. This paper reviews the latest results in the development of LSCs based on different classes of …
Publication date: 
1 Nov 2018

Raffaello Mazzaro, Alberto Vomiero

Biblio References: 
Volume: 8 Issue: 33 Pages: 1801903
Advanced Energy Materials