-A A +A
In this work, we investigate the effect of performing a high dose 20 keV He+ implant before the implantation of B at low energy (3 keV) in silicon and the subsequent thermal annealing at 800 C. The implants were performed in laterally confined regions defined by opening windows in a SiO2 mask, in order to evidence the impact on a realistic configuration used in device fabrication. High resolution quantitative scanning capacitance microscopy (SCM) combined with cross-section transmission electron microscopy (XTEM) allowed to clarify the role of the voids distribution produced during the thermal annealing on the diffusion and electrical activation of implanted B in Si. Particular evidence was given to the effect of the uniform nanovoids distribution, which forms in the region between the surface and the buried cavity layer.
Trans Tech Publications Ltd
Publication date: 
15 Dec 2005

V Raineri, F Priolo, D Alquier

Biblio References: 
Pages: 395
Gettering and Defect Engineering in Semiconductor Technology XI